On some adjunctions in equivariant stable homotopy theory
نویسندگان
چکیده
منابع مشابه
On Some Adjunctions in Equivariant Stable Homotopy Theory
We investigate certain adjunctions in derived categories of equivariant spectra, including a right adjoint to fixed points, a right adjoint to pullback by an isometry of universes, and a chain of two right adjoints to geometric fixed points. This leads to a variety of interesting other adjunctions, including a chain of 6 (sometimes 7) adjunctions involving the restriction functor to a subgroup ...
متن کاملEquivariant stable homotopy theory
We will study equivariant homotopy theory for G a finite group (although this often easily generalizes to compact Lie groups). The general idea is that if we have two G-spaces X and Y , we’d like to study homotopy classes of equivariant maps between them: [X,Y ] = Map(X,Y )/htpy, where Map(X,Y ) = {f : X → Y |f(gx) = gf(x) for all g ∈ G}. In classical homotopy theory (i.e. when G is the trivial...
متن کاملSpectral Sequences in (equivariant) Stable Homotopy Theory
1. The homotopy fixed-point spectral sequence: 5/15/17 Today, Richard spoke about the homotopy fixed-point spectral sequence in equivariant stable homotopy theory. We’ll start with the Bousfield-Kan spectral sequence (BKSS). One good reference for this is Guillou’s notes [4], and Hans Baues [2] set it up in a general model category. We’ll work in sSet, so that everything is connective. Consider...
متن کاملA Survey of Equivariant Stable Homotopy Theory
EQUIVARIANT stable homotopy theory was invented by G. B. Segal in the early 1970s [45]. He was motivated by his work with Atiyah [9] on equivariant K-theory, generalizing an earlier theorem of Atiyah’s on the K-theory of classifying spaces of finite groups to compact Lie groups, and by his work on configuration space and discrete models for iterated loop spaces. His work also suggested to him t...
متن کاملChange of universe functors in equivariant stable homotopy theory
One striking difference between nonequivariant and equivariant stable homotopy is that, in the equivariant context, one must specify those representations with respect to which spectra are to be stable. One may specify stability with respect only to trivial representations (thereby obtaining what is often called the naive equivariant stable category), with respect to all representations (thereb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebraic & Geometric Topology
سال: 2018
ISSN: 1472-2739,1472-2747
DOI: 10.2140/agt.2018.18.2419